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SECTION 1

INTRODUCTION

The response of a cable due to the interaction of y rays is

dependent on the geometry of the cable, the materials used, and the con-

struction of the cable. In this report we will look at some of the

different aspects of a computer code for calculating the short circuit

current response of a cable, various computer and experimental checks, a

parametric study, and a comparison between the measured cable responses

and the predicted values. But first, let us summarize some of the physi-

cal concepts behind the generation of the currents known as direct cable

drive.

When y rays pass through matter they lose some or all of their

energy in discrete events producing photoelectrons, Compton electrons and

possibly, if their energy is sufficient, they will produce both an elec-

tron and a positron in an event called pair production. Although this

latter event will not contribute any net current to the cable, it can

reduce the probability of producing a Compton electron. So let us now

look at the physical process that takes place when a uniform flux of mono-

energetic gamma rays pass through a cable as depicted in Figure 1. The

gamma rays in this figure are represented by a series of random straight

lines crossing the triaxial cable. Since we will assume that the cable is

thin with respect to the mean free pathlength of the gamma rays, we will

not consider secondary scattering of the photons within the cable. The

random direction of the gamma rays in Figure I simulates a twisted cable,

which, in this case, consists of an outer shield, three inner conductors,

each surrounded by a dielectric, and packed together with a filler mate-

ridI. As each gamma ray penetrates the cable it may, or may not, create

an electron.

• .-.-- - wwna nnnh an.mi mnlmN* s I - '
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Figure 1. An example of 4 gamma rays penetrating a triaxial cable creat-
ing internal currents by ejecting one "weighted" electron per

gamma ray. The gamma rays are designated by straight lines
crossing the cable and the electron paths by various special
characters. Each inner conductor is surrounded by a dielectric
miaterial packed in a filler within the outer (ring) shield.
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The probability of creating a single electron by any given gamma

ray is related to the density of the material, the pathlength through each

substance, and the energy of the gamma ray. Using this information we can

determine the pathlength of each gamma ray across the cable in fractions

of its mean free pathlength. Based on this length, the exponential atten-

uation function for the photon is computed and compared to a random number

between zero and one. If the attenuation function is greater than the

random number, scattering or photon absorption would occur within the

cable at the position determined by the random number. In Figure 1, we

see the trajectory of the four gamma rays crossing the cable and the paths

of four electrons, represented by the four special characters, each origi-

nating on the path of a gamma ray. Although there is an electron associ-

ated with each gamma ray in Figure 1, the probability of creating an elec-

tron per gamma ray in the cable is usually much less than one. Therefore,

we can either keep picking random numbers until an electron is created

within the cable or we can create an electron per gamma ray by selecting

an appropriate compensating "weight" for each electron. Mathematically,

we will achieve the same end result in determining the net current in the

cable. However, the latter method will save some computer time.

nnce an electron is created, it is moved according to the

classical equations of motion and scattered according to the Snyder-Scott

distribution function. The magnitude of the sequential steps of each

electron, as shown in Figure I by the special characters, is based on the

electron density of the material and the energy of the electron. The

actual amount of current or charge per calorie of gamma rays generated by

the displaced electrons within a cable is determined by the amount of

induced image charge on the opposing conductor. Since the induced charge

is proportional to the change in an electron's potential, we can determine

the induced charge as the potential difference between the initial and

final states of the electron times its charge by setting the potential on

the inner condcutor to zero and one on the shield. In Figure 2 we show

3
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Figure 2. Thp equipntential lines in the MX cahie laheled al. A cross
section of the tMX cable, which contains two inner conouctors,
is shown in Figure R.



the equipotential lines for a twin axial cable. The amount of induced

charge by a single electron which travels from the equipotential line A to

B would be equaled to 0.2 times an electron's charge.

Low energy photons, such as x-rays, are very effective in pro-

ducing a net flow of electrons from the shield towards the center conduc-

tors by way of the photoelectric effect. When a thin material sample is

exposed to these photons, they generate large electron emissions both in

the forward and backward directions due to their interaction with the

electrons in the sample. Although this interaction enhances the genera-

tion of electrons, it also reduces the photons ability to penetrate the

sample. This makes it relatively easy to provide effective shielding

against these photons. As the energy of the photons is increased, the

dominant physical process for creating free electrons changes from the

photoelectric effect to Compton scattering, in which a photon imparts

energy into an electron during a collision. These two processes are

equally probable in aluminum when the energy of the photon equals 50 Kev

and in copper at 0.5 Mev. The mean attenuation lengths of these photons

are 1.0 and 1.3 centimeters in their respective materials. Due to these o

longer attenuation lengths it becomes more difficult to shield cables

against these photons. However, they are also less likely to interact

with a particular cable due to their capability of penetrating the cable

so easily. In addition, whenever the attenuation lengths are larger than

the diameter of the cable, these photons will also have a tendency to

create as many electrons from the shield as from the center conductors

resulting in smaller net transfer of charge. As the energy of the photons

is increased further to high energy gammas, 5 Mev and above, the effi-

ciency of inducing a current in a cable is further reduced not only due to

their ability to penetrate the cable, but also, due to the third physical

process of interaction called pair production. The mean attenuation

length of a 5 Mev photons in copper is 3.5 cm and 13.0 cm in aluminum.

5.
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Therefore, depending on one's objective it is possible to either design a

. cable with shielding which will produce a minimum response to a given

photon spectrum or to design a spectrum which will maximize the current

response from a particular shielded cable.

6
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SECTION 2

THE MONTE CARLO CODE VERIFICATION AND RESULTS

In this section we discuss the computer codes and validation

checks, an experimental verification, a set of parametric studies, some

preliminary remarks on cable modeling, and provide a comparison of the

calculated and measured responses to a set of cables. There are two basic

computer codes. One determines the potential gradient in a cable or grid

and the other, based on this gradient, determines the response of that

cable or box structure in terms of electrons per unit energy. The first

code determines the equipotential lines as shown in Figure 2 by solving

Poisson's equation in two dimensions and in Cartesian coordinates. From

Maxwell's first law of electromagnetism, we can write

V * (Kv ) = KV24 + vK * V = -P/60 (1)

where K = c/Eo

In Cartesian coordinates, we have

a2% 22 2 +K 24, + K (2)(2 + .+ K + - p/Eo (2)
ax 2  ay2  ax ax ay ay

We solve this equation by the method of successive over-relaxation (SOR)

using the accelerated Gauss-Seidel formulation. 1  The basic idea is to

replace Poisson's equation with a diffusion equation

,u._ V2u - P (3)

7
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and let our potentials diffuse into a steady state condition given the

boundary conditions (zero potential on the shield and unity on the center

conductors). The Gauss-Seidel technique specifies the optimum value of t

for each successive iteration in order to achieve a steady state solu-

tion. The computer codes PISC and PISA take less than one minute to solve

a 51 by 51 grid pattern and a little more than a minute for a 101 by 101

grid pattern on the VAX78(. The input to PISC is in cylindrical coordi-

*nates for pre-defined cable geometries, whereas, PISA will solve any arbi-

trary geometry.

The Monte Carlo cable codes are called MCABLE and MCIMP. MCABLE

is written in cylindrical coordinates and MCIMP is written in Cartesian

coordinates. The MCABLE code assumes that the cross section of conduc-

* tors, as shown in Figure 1, are circular. Therefore, one must specify the

number of center conductors, their locations, the radius of the center

*conductors, dielectric insulators, the filler material, the radius of an

air gap if there is one, and the radius of the shield. Of course, one

must also specify the material types used in each region. In the MCIMP

code any cable or arbitrary structure is subdivided into a grid pattern

(typically 100 by 100), in which, each cell must be specified with a given

material type. Although this may sound like an unforgiving burden, the

format is such that a partial or complete row or column can be assigned to

a given material type very easily. This code is particularly useful for

. making computer checks and calculating the response of flat or non-sym-

metrical cables.

Although there are small differences in the logic between the

two codes MCABLE and MCIMP, the same physical principles are used in both

programs. The probability of producing an electron from a gamma ray is

obtained by the ratio of the sum of the photoelectric and Compton cross

* sections to the total cross section including pair production times its
"weighted" probability that it will be absorbed or scattered in the given

thickness of the cable under consideration. As the gamma ray passes

8
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through several different material types the appropriate cross sections

for each material is used. The cross sections for each of these three

processes are directly related to the atomic number and inversely propor- r.

tional to the atomic weight of the material. 2  In the Monte Carlo codes

these cross sectionz are determined fom the following equations

Aa Z 4 6
0PE 'PEa a ( - ) (4)

a

A z

a Z 2C Ca A- (5)
a

A
Gp (a a Z 2  (6)

a

where 0PEa, 0Ca and 0ppa are the photoelectric, Compton and pair produc-

tion cross sections for air as determined explicitly in the program. Aa

and Za are the weighted average numbers for the atomic weight (14.4) and

number (7.2) of air.

For I Mev photons the vast majority of electrons will be created

by Compton scattering. The Klein-Nishina cross section for photons was

used with its corresponding distribution for the ejected electrons. The

angle of the ejected electron with respect to the gamma ray's path is

determined by subdividing the Klein Nishina cross section into equally

probable fractions of the total cross section (typically 200). A random

number generator is then used to select an appropriate fraction from which

the scattering angle of the electron is determined. A simple transforma-

tion from the gamma's path to the Monte Carlo coordinate system creates

the new electron with a specified energy and direction. The electron's

position is recorded both in terms of its coordinates and in terms of the

9
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potential function described above, since the induced current is propor-

tional to the potential difference each electron transverses.

The electron moves through the cable according to the classical

equation of motion and is scattered according to Snyder-Scott distribution

as outlined in Appendix A. The equation of motion for the electron is

given by

= - A(E) (7)

ds

where A(e) is the drag factor in Bethe's formula and is approximated by

the following:
3

A( ) 2rN r2 (C 2 (T. 2.,.
( + 3.42 9n (p) -1.71-p \I/

where E and p are the energy and momentum of the electron in electron rest

mass units, I is the mean excitation potential, r. is the classical elec-

tron radius, and N is the density of atoms with an atomic number of Z.

Although the step size ds in the equation of motion is restricted to

changes in momentum of less than FACP (typically 10%), we must select a

step size between scattering events which will he used in the Snyder-Scott

distribution. We have found through experience with the Snyder-Scott dis-

tribution that we can achieve the same results with an interval step size

which yields an average of 10 or more scatterings per electron pathlength

as one obtains using 100 scatterings per pathlength. This was accom-

plished by subdividing the step size such that the mean number of colli-

sion per unit pathlength remained the same (so, see the theory section in

the Appendix) whenever the momentum of the electron dropped below an input

parameter HAP. This procedure ensures us of good statistics for the low

e~-;I

,L



energy electrons and increases our efficiency in obtaining the results

quickly. Typically, 4,000 to 10,000 particles per photon energy bin are

required depending on the material types and the geometry of the cable,

since electrons which do not leave either conductor do not contribute to

the statistics of determining the net flow of current. It takes roughly

one minute to process a thousand electrons on the VAX780.

The electron scattering angle is determined from the Snyder-

Scott projected distribution in the following manner. The probability of

getting a deflection of any angle OR in the projected plane is determin-

ed by the equation:

do WNo Q,
P lim (8)

eE EfE+ do' dRW(91,R Qo)

where P is a generated random number between zero and one, and W(eR,Q 0 )

is the Snyder-Scott distribution.

W(eR,IQO) = Ale R + A2ea R (9)

for W > .007 W(O,Qo) and

w(e PO) = Qo 11 + 1168Qo log(1o 0 ) (i0)

RI e 2

for W < .007 W(f,p20). OR is called the reduced angle in the projected

plane since it is in units of the Moliere screening angle ym, that is, eR

= ep/x m (see the theory section in the Appendix). Q0 is a function of the

size step ds and can be thought of as the mean number of scattering an

11
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*electron would encounter in length ds. The spatial angle is then computed

-" as 12 times the projected angle ep and tre azimuthal angle € is deter-

mined by another random number between zero and 2n.

We have now covered all of the essential ingredients of the

Monte Carlo code. The induced currents are calculated in the MCIMP code

as

e ( f- i w je

J(coul/cal) = ' (11)
N E 3.827E-14 cal/Mev

where N = number of gamma rays

E = energy of the gamma rays in Mev
Y

e = the electron charge
w.= "weight" or current contribution factor

w3
6i = the initial potential state of the electron

and $f = the final state,

or as

N (e E((f- ).w.(1O/XL)

J(coul/m)/(cal/cm 2 ) = (12)
_ (N /XL) 2E 3.827E-14 cal/Mev

where XL = X-dimension of box in centimeters

(N Y/XL) 2 = gamma fluence

.Y

J(coul/m)/(cal/cm 2 ) = J(coul/cal) * (100XL)

In the MCABLE code

12
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7.,

Nye )w (10/ (2Rs

J(coul/m)/(cal/cm 2)= Y (13)
(N /(2Rs)) 2E y3.827E-14 cal/Mev

where Rs = radius of the shield in centimeters.

2.1 Validation Checks

Two sets of validation checks were performed to verify the

method and accuracy of the Monte Carlo calculation. In the first case,

the mean electron range in various materials for several different ener-

gies were determined to verify the accuracy of using the Scott-Snyder

distribution function. In the second case, the forward and backward emis-

sion currents were determined to ensure that the proper "weight" or

current contribution per electron had been determined. The ranges were

determined for both the forward directed and Compton electrons using a

mode of operation called single point emission within a parallel plate

capacitor. In this mode, all of the electrons are "born" at a designated

spot with either their momentum directed forward or with a Klein-Nishina

distribution directed towards one of the plates of the parallel plate

capacitor. Since the potential differences in a parallel plate capacitor

with a single dielectric constant are directly proportional to the dis-

tance between the plates, the mean, forward and backward electron ranges

were computed by converting the average potential differences for each of

the three functions directly into ranges. The results are listed in Table

1 and the ranges of the forward directed electrons are compared to the

results from the Handbook of Photo-Compton Current Data. 4  The results of

the MCIMP code are in good agreement with the Photo Compton Handbook

except for polyethylene. This can be attributed to the fact that we

followed the procedure of Longmire 1 6 and treated CH2 as an element of

13



atomic number R and atomic weight of 14 rather than combining the elements

in the compound by weight as done for teflon (-CF 2-) and other compounds.

In order to show the effect of doubling the number of collisions per path-

length, the ranges for an electron created by a 5 Mev gamma ray were

computed with 19 collisions per pathlength and 38 collisions per path-

length yielding mean ranges of 3.56 mm and 3.46 mm in aluminum. The

computer's run time is directly proportional to the number of collisions

per pathlength and doubled in this comparison. (The large variation in

the backward compton electron ranges at 5 Mev is due to poor statistics.)

14
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The second set of validation checks involved verifying the for-

ward and backward emission currents as calculated by the Monte Carlo

code. This was done indirectly since the electrons which flow from the

upper plate of the parallel plate capacitor into the dielectric material

are multiplied by the potential difference they transverse. Therefore,

the average potential difference or range was used to compute the forward

emission current. The same logic is true at the lower plate of the capac-

itor in order to compute the backward emission current. In both of these

validation checks the material which is referred to as the dielectric

material can be substituted with any other material. Since we are solving

mathematical equations, we are not bounded by certain physical limiting

realities, such as, substituting in a good conductor like aluminum or

copper for our dielectric material. However, we must not overlook any

physical principles which do apply, such as the steady state flow of elec-

trons determining the emission currents. In this case, the upper and

lower plates of the parallel plate capacitor must be sufficiently thick to

ensure that a steady state of electron flow has been established across

the boundaries with the "dielectric" material. This requires that the top

plate, which is receiving the gamma radiation, be at least 4 or 5 electron

mean free pathlengths thick and the bottom plate at least 2 or 3 mean free

pathlengths. The results of the emission current calculations are listed

in Table 2. The agreement is very good except for the 5 Mev case where

the comparison values were determined from the Photo-Compton Handbook

instead of from OUICKE2.5  (QUICKE2 is a later version of QUICKE which was

used to determine the values published in the Photo-Compton Handbook.) The

backward emission currents for this case were not listed in Table 2, since

there was an order of magnitude difference between the projected values

from OICKE2 and the values published in the handbook.

The values determined from the Photo-Compton Handbook and for

the backward emission currents from QI1ICKE2 have tended to be high.

Therefore, values were selected from Chadsey's "X-Ray Photoemission"

16



Table 2. Computer Emission Current Checks. JF and JB are the forward
and backward emission currents as determined from QUICKE2 for
E equaled to 1/2 and 1.0 Mev and from the Photo-Compton Hand-
book for the 5 Mev case. The second set of numbers for E
equaled to 1/2 and 1.0 Mev are from the Chadsey's report on
"X-ray Photoemiss ion."

E MCIMP Material 3 MCIMP
Mev Coul/cal Coul/cal Type Coulcal Coul/cal

1/2 1.25E-8 1.28E-8 Copper -3.05E-9 -1.12E-9
1.22E-8 -2.20E-9

1/2 1.50E-8 1.04E-8 Aluminum -1.70E-9 -5.33E-10
1.30E-8 -1.07E-9

1 1.88E-8 1.49E-8 Copper -3.70E-9 -2.79E-9
1.67E-8 -2.20E-9

1 2.OOE-8 1.75E-8 Aluminum -2.OOE-9 -1.42E-9
1.99E-8 -1.15E-9

5 1.77E-8 1.08E-8 Copper -6.38E-10

5 2.12E-8 1.43E-8 Aluminum -2.29E-10
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report , in which, he compares the computer codes QUICKE2 and POEM to some

very limited data measurements in this region of 1/2 and 1 Mev. Since

Chadsey shows that the computer code POEM gives better results for the

backward emission currents, we have listed those values in Table 2.

However, we cannot explain the discrepancy between Chadsey's and

Savage's values for the forward emission currents obtained from OUICKE2

at 1/2 Mev for aluminum and 1 Mev for copper. This only helps to empha-

size the point that we should be comparing our emission currents against

measured values and not other computer codes. Based upon the excellent

agreement we obtained in Table 1 for the mean ranges, we might have

expected almost exact agreement with the forward emission currents in the

1 Mev case in particular, since the backward emission currents agree.

These discrepancies should be resolved with experimental data.

2.2 Experimental Check

In addition to these validation checks, an experimental verifi-

cation check was performed by using a device which is called a solid

photo-emission diode (SPED). This device consists of three parallel

plates buried within a block of polyethylene in a sandwich layered con-

struction. The two outer plates were made of 10 mil aluminum and electri-

cally grounded, while the inner plate was made of copper 1/16 of an inch

thick. The separation thickness between the plates consisted of 1/4" of

polyethylene. During the assembly of this device, an attempt was made to

eliminate any air gaps by heating the device causing the polyethylene to

soften and hopefully fill the gaps. This attempt was apparently unsuc-

cessful since the measured response was positive in air and negative in a

vacuum. The vacuum response of -2.79E-9 coul/cal did agree very well with

the computed value of -3.OE-9 coul/cal from the Monte Carlo code MCIMP

using an average gamma ray energy of 1.1 Mev. Unfortunately, it is only

of limited usefulness in verifying the accuracy of the Monte Carlo codes

due to the possibility of stored charge being released during the

measurement.

18
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2.3 Parametric Studies

A series of parametric studies were conducted in order to under-

stand the behavior of direct drive currents in coaxial cables. Based on

these results a simple model was developed to estimate the currents gener-

ated from the shield and center conductors of a coaxial cable. Figure 3

shows the variation in the external currents induced by emission from the

shield, dielectric and center conductors as a function of varying the

diameter of the center conductor while holding the radius and thickness of

the shield constant. One should note that not only does the center

conductor increase its current contribution, but also, the shield contri-

bution increases while that from dielectric material remains approxi-

mately constant. Although the center conductor increases its current

contribution directly in relationship to its size as might be expected,

one might not expect the shield current to increase in this case, since

the shield thickness is held constant. However, the induced current on

the center conductor, as pointed out earlier, is directly proportional to

its imaqe charge. The image charge is determined from the net potential

difference an electron transverses in going from the shield towards the

center conductor. Since the dielectric thickness decreases as the center

conductor is increased, the gradient of the potential is increased.

Therefore, an electron ejected from the shield traveling one mean free

pathlength in the thin dielectric material will induce more charge on the

center conductor than in the case of the thick dielectrical material.

Figure 4 shows the variation in the shield, dielectric and

center conductor currents as a function of the shield thickness holding

the outer radius of the shield Rs constant and letting the dielectric

thickness vary. In the previous figure, we found the dielectric current

to be of opposite sign and roughly the same magnitude of the center

conductor current with the shield current dominating the net flow of

current. In Figures 4a and 4d we explore this idea, first by reducing the

shield thickness dramatically, and then, by radically increasing the
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2.0 1.0

10 - 12.0

2.0

1.0
1.0

-2.0 0.0 1.0 2.0 (b)

X ((m)

Radius (mm) 3/jN

(a) Shield 1.79 -1.13E--8 .61
Dielectric 1.49 -1.11E-8 .60
Conductor .255 4.02E-9 -.22
N -1.84E-P

(h) Shield 1.79 -1.55E-P .57
-ielectric 1.4 -1.36E-8 .59

Conductor .456 6.06F-9 -.26
RN -200E-8

(c) Shield 1.79 -4.56E-8 1.14

Dielectric 1.49 -1.35E-R .34
Conductor .957 1.91E-P -.48
JN -4.OOE-8

Figure 3. The shield, dielectric, and center conductor "currents" (0 in
(coul/m)/(cal/cm2 ) as determined from the Monte Carlo code

MCABLE and their ratio to the net current JN as a function of

size of the center conductor. The radius and thickness of the

shield is held fixed. Figure a corresponds to cable UT141-75C
and Figure b corresponds to cable UT141A. The shield and
center conductors are made of copper and the dielectric mate-
rial is teflon.
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1.0 1.0

0.00

0-1.

__ ___0__ __ __ __2___ __ -2.0.

0.0 a0 
2X (mmn) (a . lX (mm)

2.02.

1.0 1.0

~0.0 0.

- -2.0 -1.0 x0.0 1.0 2.0 (c. X1. (mm)0 2

Radius i. J/JN

(a) Shield 1.79 -5.92E-9 .43
Dielectric 1.69 -1.OOE-8 .72
Conductor .255 2.18E-9 -.16
JN -1 .38E-8

(b) Shield 1.79 -11E8.61
Dielectic 1.49-1.13E-8 .6

Conductori 1.245 1.11E-8 .22

~JN -1.84E-8

(c) Shield 1.79 -1.49E-8 .78
Dielectric 1.36 -8.24E-9 .43
Conductor .255 4.11E-9 -.22
JN -1 .90E-8

(d) Shield 1.79 -1.79E-8 2.13
Dielectric .79 3.86E-10 -.05
Conductor .255 q.11E-9 -1.09

-R39-

Figure 4. The shield, dielectric, and center conductor 'Currents" J
(coul/m)(cal/cm2) as determined from the Monte Carlo Code
MCABLE and their ratio to the net current JN as a function of
the shield thickness. The radii of the shield and the center
conductors are held fixed.
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thickness. In Figures 4a, b and c we see that it is very difficult to

reduce the net current by reducing the thickness of the dominating shield

current, while maintaining the same shield radius. In Figure 4d we have

gone to the other extreme and increased the thickness, such that, the

active area in the cable has been significantly reduced. This is not the

same as just reducing the thickness of the dielectric material, since the

response in Figure 3c is four times greater than Figure 4d with the same

dielectric thickness and overall cable diameter.

Since we are not restricted to dimensional variations, in Figure

5 we look at the effects on the individual and net -urrents produced by

changing the material types within a cable and the radiating energy spec-

trum which drive these currents. In Figure 5a the effectiveness of a

copper shielded cable is compared to that of an aluminum shielded cable in

Figure 5b, which results in a 50% decrease in the net current. In Figures

5c and 5d the teflon dielectric is replaced with a polyethylene dielec-

tric, and once again a 50% reduction in the net currents is achieved.

Both of these reductions in net current are easily understood, since the

interaction of gamma rays is highly dependent upon the density of the

material being used. The densities of copper, aluminum, teflon and poly-

ethylene are 8.96, 2.70, 2.20 and 0.92 gm/cm 3 respectively. The last two

parts of Figure 5, Figures 5e and 5f, along with Figure 5a, show a varia-

tion in the net current from -2.45E-8 (cou )/(cal/cm 2) to -2.09E-8

(coul/m)/(cal/cm2 ) for 0.8 Mev and 1.3 Mev gamma rays respectively.

Although we have looked at dimensional, material, and energy

variations, in Figure 6 we consider varying the shield thickness while

holding the dielectric and center conductor dimensions fixed for two

materially different cables. In these figures, we can see the direct

response of current to variations in the shield thickness, while the

dielectric and inner conductor currents remain approximately fixed. As

shown in this figure and previous figures, the shield and/or dielectric

22
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2.0

1.0

0.0

-.. 0

-2.0
-2.0 -1.0 0.0 1.0 2.0

X (mm)

J J/JN Material J J/JN Material

(a) Shield -1.55E-8 .67 Copper (h) Shield -2.07E-8 1.63 Copper
Dielectric -1.36F-8 .59 Teflon Dielectric -5.RqE-9 .4F Polyethyler,
Conductor 6.06E-9 -.26 Copper Conductor 8.97E-9 -.7] Copper
J I -2.30E-8 JN -1 .27F-8

(c) Shield -P.50E-9 .73 Al uminum (d) Shield -R.26E-9 2.0 Aluminur,
nielectric -6.96E-9 .59 Teflon Dielectric -2.80E-11 .01 Polyethylene

Conductor 3.78E-9 -.32 Copper Conductor 4.32E-q -1.01 Cnpppr
JN -1 .17E-8 IN -4.2RE-9

E =0.8 Mev E =1.3 Mev
Y Y

(e Shield -I.nE-P .44 Copper (f) Shield -2.30E-8 1.1n Copper
Dielectric -1.83F-8 .75 Teflon Dielectric -6.43E-9 .31 Teflon
Conductor A.57E-9 -.19 Copper Conductor 8.54E-q -.41 Copper
JN -2.45E-8 JN -2.09E-8

Figure 5. The shield, dielectric, and center conductor currents"
(coul/m)/(cal/cm2 ) as determined from the Monte Carlo code
MCABLE and their ratio to the net current as a function of

various material types as labeled in Fig.-es a through d. In
addition, the cable listed in Figure a was also used in Figures
e and f but their responses were determined at gamma energies
of 0.8 Mev and 1.3 Mev instead of 1.0 Mev. The dimensions are
Rs = 1.79 mm, Rd = 1.49 mm and Rc = 0.456 mm and this

cable corresponds to IJT141A.
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2.0 2.0

1.0 1 0

01.0 -1.0 7

-2.0C 0 1..I . (a) -2 C
-0 -0 00 1 0 20 0 -IC 0 c 0

X (mmr) X(mmr)

2.0

1.0

-20 .0 0 10 2 0 (C1)
X (mnm)

(a) Shi el d 1.64 - 1.n3E-8 .62 Cop ppr
D~ielectric 1.49 -1.21E-P .73 Teflon
Conductor .456 5.JR3E-9 -.35 Copper
JN -1 .66E-8

(h) Shield 1.79 -1.55F-P r 7 Copper
Diplpctric 1.d9 -1.36E-8 .59 Teflon
Conductor A 66.f6F-9 -. 26 Copper
JN -2.30E-8r

C) Shield 1.79 -8.62E-9 2.01 1uni num
Dielectric 1.4q -2.80E-11 .fl1 Polyethylene
Conductor .456 4.31E-q -1.01 Copper
JN -1.90E-8

(H) Shield 1 .59 -2 .,3F-q 2.13 Alu1minur,
Dielectric 1.49 -2.45E-9 2.15 Polyethylene
Conductnr .496 3.73E-9 -3.27 Copper

T N.T ---

Figure 6. The shield, dielectric, and center conductor "currents"
(coul/fr,)/(cal/cm 2 ) as determined from the Monte Carlo code
MCABLE and their ratio to the net current as a function of the
shield thickness for two different sets of materials. The
radius of the dielectric and the center conductor are fixed.
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currents dominate the inner conductor current in a single conducting

coaxial cable unless they are significantly less dense than the inner con-

ductor material. However, in Figure 6d we did not achieve a reversal in

the flow of net current even with a very thin aluminum shield and a poly-

ethylene dielectric.

We still have not covered one very important aspect governing

the response of cables due to gamma radiation, and that is, the air gap.

The air gap in cables not only affects the material and geometrical

aspects of a cable, but also, serves as a reservoir for storing charge

which is released during gamma and X-ray radiation. In this report, we

are only concerned with the material and geometrical aspects of air gaps

within cables as shown in Figure 7. In Figures 7a and 7b, we notice

that although the teflon and polyethylene currents are positive, we have

not discovered anything new here. We have merely given the electrons

created in these dielectric materials the opportunity to travel through a

greater potential difference before being conducted away from the shield.

The same phenomenon would be true if we sliced the teflon dielectric in

Figure 7c in half. The outer teflon ring would yield a negative current

and the inner ring a positive current with the same net current. Although

we might be pleased by the fact that no net current was generated in the

gap, we must also remember that the lower density of the air gap lets

electrons travel a greater distance into the cable generating larger

shield currents. This is seen by comparing the shield currents in Figures

7a, 7b and 7c. Figure 7a represents the Adams-Russell FN-30 cable which

is constructed with an inner solid teflon ring around the center conductor

followed by an outer perforated teflon ring. Figure 7b contains the

approximate dimensions of the Andrew FHJ1-50 cable which used foamed poly-

ethylene as its dielectric material. Figure 7c has no air gap and pro-

vides a comparison with t ibove two cables.
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4.0

2.0

. 0.0

-2.0.

-- 4.0 I I

-4.0 -2.0 0.0 2.0 4.0

X (mm)

Radius 3 JIJN Material

(a) Shield 3.16 -1.05E-7 1.33 Copper
Air Gap 2.57 n.n 0.0 Air
Dielectric 2.00 1.77E-8 -.22 Teflon

Conductor *q53 7.84F-9 -.10 Copper
JN -7.91E-8

(b) Shield 3.16 -1.014F-7 1.79 Copper
Air Gap 2.57 0.0 n.O Air
Dielectric 2.00 2.70F-8 -.48 Polyethylene
Conductor .953 1.78E-P -.31 Copper
JN -5. 66E -8

(c) Shield 3.16 -3.70E-8 .43 Copper
Dielectric 2.57 -6.27F-8 .72 Teflon
Conductor .953 1.27E-8 -.15 Copper
JN -8.70E-8

Figure 7. The shield, dielectric, and center conductor "currents"
(coul/m)/(cal/cm2 ) as determined from the Monte Carlo code
MCABLE and their ratio to the net current as a function of two
different dielectric materials with and without an air gap.
The density of teflon is 2.2 gm/cm 3 , polyethylene is 0.92
gm/cm 3 and the radii dimensions are in millimeters. Figure a

corresponds to cable FN-30 and Figure b is approximately cable
FHJ1-50. Figure c shows the effect of removing the air gap in
Figure a.
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2.4 Aspects of Modeling

Based on this parametric study one cannot resist the temptation

to put forth a simple model for predicting the induced currents in a cable

due to gamma radiation. It would seem reasonable that given the emission

currents for the shield and center conductor and the mean free path of an

electron in all the materials involved, that one could write an expression

for the induced currents from both the shield and center conductor. We

know from elementary physics that the equipotential lines in a coaxial

cable are qiven by the formula

V V 9-n (R/R) (14)z~n (R d/Rcd RRc

where Rd = radius of the dielectric material

R = radius of the center conductor
c
R : any arbitrary radius between Rc and Rd

and V1 = the potential difference between the shield and center

conductor. Since we are interested in fractions of electron charge which

are induced on the conductors, we set V1 equaled to 1.0. As in our ear-

lier discussion on validation checks, we showed that the currents recorded

in the Monte Carlo code for a parallel plate capacitor are related to a

material's emission current times the mean forward range of an electron.

In a twisted cable this adds several complicating factors due to the

geometry and the different materials of the cable. However, for a single

conductor coaxial cable we would expect the random direction of gamma rays

crossing the cable, simulating a twisted cable (see Figure 1), to gi~e us

the same response as a non-twisted cable due to its symmetry. This only

simplifies our concept from randomly directed gamma rays crossing the
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cable to a uniform pattern of gamma rays coming from one direction. We

still must compute an effective range, instead of using the mean forward

range for electrons emitted from either the shield or center conductor,

due to the geometry and different materials involved in a cable. As in

the previous analysis of emission currents where the induced current J was

written in terms of the emission current J times the average potential
E

difference A an electron transversed, the induced current in a cable can

be determined from Equation 13 as

J(coul/m)/(cal/cm 2 ) =J A 200 R (15)
E srnfor electron ejec ted from te the shield and cetraodutr

dt he gepotentiya differene inathiase isvodeterine fromle EqAtion

~~r~d 1c + dR Rd1RRE (6

(n(R R d /R R I cR/

th pevou a dcsi of cmsso curet chr h idc durn dwa

for an electron ejected from the cshed anduc

wher R adis o t1 dilcrmera

dcd

foe aneectne ro Eectfom the cetrcodco

R =cradius of the center conductor
c

and R the effective range of an electron in transversing the

equipotential lines of a cable.
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Although the effective range R for an electron emitted from
either the shield or center conductor can be determined in MCABLE by

single point emission from several positions on either conductor, let us

estimate the value R . The electrons which are emitted from gamma rays

passing through the center of the cable will have a range equaled to a

combination of the mean forward range in the conductor with that of the

dielectric material. We will select the average value of these two ranges

for our first order approximation. This average mean forward range of

electrons entering the dielectric from the shield will continually be

shorted by the curvature of the shield as the forward emission of elec-

trons approaches a tangent to the dielectric material. We might expect

the mean range to vary from a normalize value of 1.0 to 1/2 at the tan-

gent, except the shield begins curving back and the electrons begin to

make a transition from the upper half of the shield to the lower half. In

addition, the average range of electron is not directed towards the center

conductor but must be multiplied by a cosine term. Therefore, we have

selected the effective range of a electron emitted from the shield as the

average value of the cosine function between zero and 90 degrees squared

times the average forward range of .he two materials. This should also

work to a first approximation for the center conductor since the mean free

path of electrons in the center conductor approaches zero as the gamma

rays approach a tangent to the center wire.

As in the previous parallel plate capacitor model, when using

the emission current JE, we are assuming that a steady state flow of

electrons exist across each interface and that the number of electrons

generated per unit area is proportional to the number of gamma rays for

the same unit area. Since a steady state flow of electrons requires that

the material he at least four or five mean free electron paths thick, we

can expect the effective diameter of the center conductor to be reduced
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slightly. The area of the center conductor to the total area of radiation

is proportional to Rc/Rs. Likewise, the area of the shield which is

contributing induced current to the total area of radiation is propor-

tional to Rd/Rs. Multiplying Equation 15 by each of these ratios

gves us the following two equations for predicting the response of either

the shield or center conductor.

Ss(coul/M)/(cal/c m 2 ) = E - s R d 200 (18)

3 (coul/M)/(cal/cm 2 ) = d Ac R 200 (19)
c E cc

where R = the radius of the dielectric material in centimeters
d

R = the radius of the center conductor in centimeters.

and R 6 .405 times the average mean forward range.

The predicted values Jp for the shield and center conductor

currents are shown for Figures 3 and 4 in Table 3. One should note that

although the average error factor, or ratio of the predicted value to the

Monte Carlo result is large, the standard deviation is small except for

Figure 4a. There are two separate reasons for the large deviation in

Figure 4a. First, the shield is very thin, less than 2 mean free electron

pathlengths thick which did not permit a steady state flow of electrons to

he achieved, and secondly, there were insufficient statistics taken in

recording the center conductor current. The average error factor for the

shield is 1.75 and 3.75 for the center conductor. Although this model

does not attempt to predict the values exactly, it can be used to provide

some insight into the generation of shield and center conductor currents.
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Table 3. The results of a simple analytical model are compared to those of the
Monte Carlo code MCABLE.

Figure
Number Radius 3 jP JP/J JP/J

3a Shield 1.79 -1.13E-8 -2.OOE.-8 1.77
Dielectric 1.49
Conductor .255 4.02E-9 1.59E-8 3.95

3b Shield 1.79 -1.55E-8 -2.98E-8 1.92
Dielectric 1.49
Conductor .456 6.06E-9 2.56E-8 4.22

3c Shield 1.79 -4.56E-8 -7.98E-8 1.75
Dielectric 1.49
Conductor .957 1.91E-8 7.24E-8 3.79

4a Shield 1.79 -5.92E-9 -1.86E-8 3.14
Dielectric 1.69
Conductor .255 2.18E-9 1.48E-8 6.81

4c Shield 1.79 -1.49E-8 -2.12E-8 1.42
Dielectric 1.36
Conductor .255 4.11E-9 1.68E-8 4.08

4d Shield 1.79 -1.79E-8 -3.24E-8 1.81
Dielectric .79
Conductor .255 9.11E-9 2.48E-8 2.72
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2.5 Results

In Figure 8 we have computed the response of several cables that

were tested 8 in the Raytheon FX-25 Van der Graaf type flash X-ray

machine. These cables, the two cables listed in Figure 7 and the UT141A

cable in Figure 3 were exposed in air to a filtered spectrum using 1/4" of

lead with an average gamma ray energy of slightly less than 1.1 Mev.

Unless otherwise noted all of the Monte Carlo calculations were done at

1.0 Mev, since as shown in Figure 5 and confirmed by the test measure-

ments, the induced currents are only weakly dependent upon energy in this

region. Although the UT-1OAL cable in Figure 8a is listed with both

polyethylene and teflon, only the teflon version was tested and the poly-

ethylene version is just being provided as a comparison. The MX cable in

Figure 8b, which was referred to as Cable #1 in the Hi-Rel Laboratory

report 9, showed only slight changes in its response when radiated in a

uniform fashion parallel and perpendicular to the center line of two con-

ductor axes. The values listed in Figure 8b are for the twisted version

of the MX cable. The last two cables are standard generic coaxial cables

RG-59 and RG-58.

The Monte Carlo code calculations are compared to the measured

values in Figure 9. Unfortunately, all of these measurements were per-

formed in air with the exception of the Judd TSP cable, which was measured

in a vacuum, and could be seriously effected by the release of stored

charge within the cable. This is clearly demonstrated by the FN-30 cable

which contained a perforated dielectric. The response is equal in magni-

tude to the predicted value by the Monte Carlo code MCABLE but of the

opposite siqn. Even in a vacuum, the response of this cable remained

positive. The measured values for the UT-141A and MX cables were also

effected by the release of stored charge, since the measured response of

the UT-141A cable is less than the UT-IOIAI cable and the MX measurement

is far below the Judd TSP measurement. We know from the physics of the
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(a) Shield 1.28 -4.74E-9 2.69 Aluminum -6.04E-9 1.36 Aluminum
Dielectric .890 5.71E-10 -. 32 Polyethyl ene -8.OOE-10 .18 Teflon
Conductor .255 2.41E-9 -1.37 Copper 2.41E-9 -.54 Copper
JN -1.76E-9 -. 3-

(b) Shield 1.56 -1.81E-7 1.28 Copper
Filler 1.43 -8.19E-9 .58 New Filler
Dielectric .66 3.68E-9 -.26 Raychem 55 (Tefzel)
Conductor .43 8.53E-9 -.60 Copper
JN -1.41E-P

(c) Shield 2.43 -2.71E-8 1.06 Copper
Dielectric 1.91 -5.88E-9 .23 Polyethylene
Conductor .321 7.39E-9 - .29 Copper
JN -2.56E-8

(d) Shield 1.9i -2.38E-8R 1.43 Copper
Dielectric 1.54 -1.43E-9 .09 Polyethylene
Conductor .406 8.48E-9 -.51 Copper
JN -1.67E-8

Figure 8. The shield, dielectric, and center conductor "currents"
(coujl/ri)/(cal/cn 2) a nd their ratio to the net current for
various cables tested. Figure a corresponds to cable UT-i0lAL.
Figure b corresponds to the MX cable. Figures c and d are
standard generic cables RG-59 and RG-53 respectively.
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Figure 9. This is a comparison between the measured (M) and calculated
(C) responses of 8 cables using the computer code MCABLE. All
of the cables were tested in air with an average gamma energy
of 1.0 Mev except the Judd TSP cable which was tested at 0.86
Mev in a vacuum. The calculated values for UT-lOlAI cable were
done for both teflon and polyethylene, although the cable was
listed as containing teflon. The exact dimensions of FHJI-50
were not obtained, however, FJH is believed to be a close
approximation. All the measured and calculated values are
negative with the exception of the measured value for FN30. It
is positive.
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situation as confirmed in Figures 5a and 5c that the aluminum shielding on

the UT-1OAI cable will produce fewer electrons flowing into the inner

conductor than the copper shield on the UT-141A cable. Therefore, we

would expect, as confirmed by the calculated values, that the response of

the UT-lOIAI cable would be significantly less than that of the UT-141A

cable. However, in the case of the MX and Judd TSP cables where the Judd

cable is approximately 0.81 times the dimensions of the MX cable, we might

expect the Judd TSP cable response to be about the same as the MX cable.

The MX cable contained Raychem 55, which is another form of Tefzel, with a

density of 1.7 and a filler labeled New Filler with a density of 1.17

gm/cm 3. The Judd TSP cable contained polyvinyl chloride with a density of

1.7 gm/cm 3. The calculated values are about the same but the measured

values differ by a factor of 40. Although all of the measurements should

have been performed in a vacuum to minimize the effects of stored charge,

the agreement is still very good for the RG-58, RG-59 and UT-1OIAI cables,

as shown in Figure 9.
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SECTION 3

CONCLUS IONS

The physical mechanics of determining the response of a cable

due to gamma radiation is understood. An analytical model for both single

and multi-conductor coaxial cables could be developed to aid in the design

of low "gamma current" responding cables as demonstrated by the simple

model proposed in this report and by the Monte Carlo Codes MCABLE and

MCIMP. Although there are uncertainties in both measuring or modeling the

dimensions, dielectric constants, densities and the chemical composition

of a particular cable, the errors in these parameters are usually very

small with respect to the error produced in determining the net current.

Based on the parametric study conducted in this report, the problem of

reliability predicting the response of a cable above 0.5 Mev is dependent

upon the release of stored charge within the cable. Although no attempt

has been made in this report to predict the amount of stored charge

released from a cable due to gamma radiation, it can be orders of magni-

tude greater than the values predicted here. As demonstrated in the gamma

ray direct drive measurements, the FN-30 cable's response in a vacuum fell

to 8% of its air value. 8  However, this cable was designed with a par-

tially perforated dielectric and one might anticipate a large amount of

stored charge. The measured value in air, as shown in Figure 9, is equal

in magnitude to the predicted value but of the opposite sign.

The Monte Carlo codes MCABLE and MCIMP are designed to predict

r

the direct drive currents due to gamma radiation above 200 Key. Although

the Moliere single and multiple scattering formulas are valid for kinetic

energies of the scattered particle to be as low as 3 to 10 Key, the

Scott-Snyder approximations are made for nominal thicknesses of o,, equaled
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to 100 or more. We have found through the use of the MCIMP code in its

range determinations given in Table I that 10 or more scatterings per

pathlength are required to achieve results which are accurate and inde-

pendent of the number of scatterings. This requires that the gamma radia-

tion energy be at least 200 Kev. Since we were only concerned with gamma

ray energies above 0.8 Mev in this report, we did not include a separate

energy and angular distribution function for any of the created photoelec-

tric electrons. We merely treated them as Compton electrons, since their

contribution to the current is small for gamma ray energies above 0.25 Mev

for low Z elements like aluminum and 0.6 Mev for copper.

The accuracy of the Monte Carlo codes was verified by the range

and emission current determinations in Tables 1 and 2, and by the SPED

experiment. The results from the MCIMP code and the Photo-Handbook for

the mean value of electron ranges in different materials were in very good

agreement. The forward and backward emission currents as calculated by

the MCIMP code were low in comparison to the values from the QUICKE2

code. However, the calculated value from the MCIMP code of -3.0E-9

coul/cal for the SPED device, which was designed to provide an accurate

measurement of emission currents, was slightly larger than the vacuum mea-

surement of -2.75E-9 coul/cal. Conversely, the response of Judd TSP

cable, which reversed sign when placed in a vacuum, was a factor of 4

greater than that predicted by MCABLE. Although the air measurements and

the calculated values are in very good agreement for the RG-58, RG-59 and

IIT-IOIAI c4hles, more vacuum measured data should be used to further

establish the accuracy of the MCARLE and MCIMP codes and to resolve any

small differences between these rodes and the QUICKE2 code. The MCABLE

and MCIMP codes can be used to predict the response of multi-conductor

cables and any arbitrarily shaped device or cable.
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APPENDIX

SINGLE AND MULTIPLE SCATTERING THEORY

Multiple scattering of charge particles by atoms first became

relevant to particle physics with Rutherford's discovery of the nucleus by

means of scattering alpha particles by thin foils. The following discus-

sion will provide a brief synopsis of the development of single and multi-

ple scattering theory from this 1911 experiment in classical physics to

the quantum mechanical solution obtained by Moliere. Finally, we will

conclude with the Snyder-Scott solution due to its simplistic form and its

agreement with Moliere's results. This discussion is not intended to be a

rigorous mathematical derivation but merely to provide an overall view.

(The reader interested in pursuing this subject should refer to the refer-

ences for a more detailed mathematical explanation of the results pre-

sented here.)

Based on Classical Physics Rutherford's cross section of scat-

tering was developed to explain the scattering of a charge particle from a

bare nucleus of infinite mass. That is, Rutherford assumed that the only

force between the alpha particle and the nucleus was an electrostatic I/r2

force and that only the alpha particles direction of momentum would change

while the nucleus remained stationary. Therefore, for a fast non-

relativistic particle of charge ze which can easily penetrate the electron

cloud surrounding a massive nucleus of charge Ze the Rutherford cross

section will adequately describe the scattering of these particles. The

Rutherford cross section" is given by

aRu(e) (2zZe 2/mv2)2  (A-1)(2sin(e/2))A

A-1
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where 1/2 mv2 is the kinetic energy of the particle. In the relativistic

case, particles involving small angles are scattered according to the

relativistic Rutherford cross section

4m2
Ru (e) = (A-2)k 2 04".

where the Born parameter ( is given by

z7 zZe 2

_= - = -- (A-3)
1378 -flv

and the recriprocal of the wavenumber

1 = o = /p (A-4)

k

For our less energetic electrons this law must be modified to

take in account the effects of screening and scattering by the atomic

electrons, and the finite size and recoil effects of the scattering

material. We must make a transition here from classical physics with its

billiard ball analogies to quantum mechanics with its scattering wave

analysis. In 1926 Erwin Schroedinger postulated that the classical

equation of motion

2
E =__ + V(r) (A-5)

2m

could he replaced by the quantum mechanical wave equation

-_V =72 4+ V(r) (A-6)
at 2m

The time independent form of this equation can he found by applying the

method of separation of variables with a separation constant E as

A-2



2 
,,

E - v2  + V(r),i (A-7)

where Y was replaced with p(t). @ represents our total wave function

which can be decomposed into an incident wave or parallel beam of
ikr

particles represented by a plane wave i = e plus a scattered wave or
particle beam propagating spherical outward by s = f(e) e /r, where

f(a)is called the scattering amplitude or angle-distribution factor. We

can once again apply our separation of variables technique to the Schroe-

dinger time independent equation if the nuclear potential function is

spherically symmetric and the scattering region is isotropic. In polar

coordinates this yields

+ k2 
- ( 2 r) = 0 (A-8)

dr 2  r 2

and

! 2 ( ,(e) .

sne )= -i(n+I) e(e) (A-9)sine 3e ;6

where e(zl+) is the separation constant. It is well known to students of

quantum mechanics that the solutions to these two differential equations

are given by a complete sum of Bessel functions for the radial equation

and the Legendre polynomials for the e equation.'' Since we have assumed

an isotropic medium without the presence of electrical or magnetic fields,

and therefore, independent of ,, we can write the solution to Schroe-

dinger's equation in the presence of a scat ering potential as

bz(J + P (cosO) (A-IO)
t zJ+112 z- z- - 3

A-3 %



-" In the asymptotic case, that is, where our observation point is far from

the atomic region of scattering, we can approximate the Bessel functions

as follows:

2 sin (kr - ) for x=0,1,2,
t+112 kr+- nkr

2 cos(kr - for Z=0,1,2,

-12 kr+- Tkr 2

Furthermore, with the aid of a trigonometric identity we can write the

solution for the xth partial wave as

rC sin (kr z + 6z Pz(cosO) (A-Il)

kr 2

" (-1) £ b.

where tan 6, = (A-12)
a

We can now equate our total wave function with the Schroedinger solution

and solve for the scattered amplitude function. That is,

ikz i kr 0
{e + f(e) e = I X sin(kr 2 + 6£) P.,(cose) (A-13)•r 7 kr VO=0

In the absence of a scattering potential

Aeikz = Y1 C a sin(kr - --!+ 69) PY(cose) (A-14)
7r k'r £0 ££2

Therefore, if we write the sine functions in terms of their exponentials

eikr and e -ikr, which are linearly independent, we can equate their coef-

* ficients and solve for f(e).

A-4
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1 2 1 Ie- /2 2i6
f) - 0 a e e -1) P (cose) (A-15)
S2i 90 e

We can proceed one step further by taking advantage of the orthogonality

properties of the Legendre polynominals and solve for the constants a9.

by multiplying Equation 14 by Pn(cose) and integrating.

1 ikr cose _ 2 1 a si { r .

A f P (cose) e dcose / -1 a sin(kr '-
n T kr z 2

-1w

f P z (cose) Pn (cose) dcose (A-16)
-1

1 2'
where f P (cose) P (cose) dcose +1 6

9. n 2z.+1 n9.

The left hand side of Equation 16 can be simplified by partial integration

as

I ikrcosO A ikr 1A f e P (cose) dcose = e P (cose) -
-1 ikr

A f e ikrcose P'(cose) dcose (A-17)
ikr -1

Since the second term on the right hand side of this equation is on the

order of 1/r2, we can approximate the integral with the first term as

Al sin (kr - )

kr 2

Substituting this back into Equation 16 we get

A-5
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a, Ai' / (2 +)
2

The solution for the scattering amplitude becomes

OD 2z+1 2i6
f(e) = (e 'I_) P (cose) (A-19)

Z 2ik

The differential scattering cross section is given by the square of f(o)

as

1 2i6 1 a-0
17(e) =- (2z+1)(e -1) p(cose)1 2  (A-20)

4k 2

and the phase factor 12 is given by

sin 6X = - -i r dr(--)1/2 j +l/2 (kr) V(r),(r) (A-21)
0

This differential scattering cross section a(e) represents an

asymptotic solution to Schroedinger's equation for the elastic scattering

of particles incident from an arbitrary but spherically symmetric nuclear

potential barrier V(r). Before we apply this solution to Moliere's com-

plicated potential function, let us first look at a simple function. One

of the simplest models of electronic screening of the nucleus is called

the Yukawa potential which is represented by a single exponential factor.

V(r) = _ z 2  e u r/r O

r

A-6
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where ro is the Thomas-Fermi radius %

r0 = 0.468 * 10-8 Z1/ 3 cm

and is an arbitrary factor of the order of unity. The first Born

approximation to the solution for the cross section is obtained by replac-
2i6Z

ing e -I in Equation 20 by 2i6 and (r) in the phase factor equation

with the Bessel function solution to Equation 8 with V(r)=O
Co

=9 f rdr j2  (kr) V(r) (A-23)

This yields a cross section of

() = 42 4a2 (A-24)

k2 [2 sin 2 () + p2/k2r2]
2  k2(e2 + 2)2

2 00

where the Born screening angle x is given by

× O= Lz= = 4 =p)O (A-25)':

0 kro pro ro

1.13 1 3"

and x0 =1. Z/3 (mec/P) radians (A-26)
137 ,

We can write this result in the form of Rutherford's formula with a

screening factor q(e) as

4a2
a(e) q(e) (A-27)

k~4

where q(e) (A-28)
(e2 + X2) 2

A-7

A- 7



Let us put this screening factor into its proper perspective. Since the

screening factor approaches 1.0 for large angles of scattering, it will

have no effect on determining the scattering cross section. However, for

small angles of scattering the screening factor will be very effective

since q(O) approaches zero. This means that a particle passing far from

the nucleus will be perturbed by the electron cloud and undergo a small

deflection. Even for the largest values of Z (the biggest electron

clouds) a 210 Kev electron, which corresponds to an electron rest mass

momentum of 1.0 (p t r c), will have a Born screening angle of only 2e

degrees (see Equation 26). Although one may be tempted to ignore this

small defection, a later solution will show us that to a first order

approximation f(e) has a Gaussian distribution with the majority of

scatterings occurring at small angles. In addition, we will find that the

Moliere screening angle is larger due to an additional energy depend term

a as defined in Equation 3.

Moliere attempted to extend the first Born approximation which

is valid for a << 1, to a formula valid for lower energies (3 Kev) and

angles up to 900 and to improve the exponential Yukawa screening potential

by fitting the Thomas-Fermi function for heavy atoms with the sum of three

exponentials. Let us recall two important approximations we made in the

first Born approximation. First, the phase shift factor was found by

using the incident unperturbed wave function i (r) in Equation 21 rather

than the scattered wave function due to its dependency on 6 Z. Moliere im-

proves his solution by replacing the k 2 - 2mV(r)/,M2 in Equation 8 with

the relativistic value k2 and rewrites the Schroedinger equation in its
r

relativistic form as:

Id + 1 d - (z + 1/2)2 + k2(r r 1 /2  (r) 0 (A-29)2 -- 2 + k r ) r 1

dr r dr r2

where k (r) = I {(E - V(r)) 2 
- m2c /2 (A-30)r 4F( -3 ) ,

A-8
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Assuming the asymptotic form of (r) to contain a phase factor e he

finds by the WKB method

+fr dr r) 1 /2
y (r) :-- + f dr' 1 kr2(r') -(. r' j/(-1

4 I r r
I  (A 31

For the unscattered wave he replaces k (r) with k and finds

r

y0(r) d' 1k2(2 + 1/ I/ (A-32)

4 p r'

z + 1/2
where p k

The phase shift 6 is then given by

5 lim y (r) - y0(r)] (A-33)

r m

and if k2 is expanded in powers of V(r)/hkv we find
r

I(P) - f 1 V(r) r dr (A-34)

2 -4i- p (r 2  21/2

The other Born approximation involved replacing e 2i - 1 in
Equation 20 with 2i6 z Moliere improves his solution by replacing the

summation in Equation 20 with an integral over a Bessel function which he

then evaluated in various regions of energy (a) and angle (e). This enab-

les Moliere to avoid replacing e2 i - 1 for large ct. First Moliere

replaces the Legendre Polynominals with the asymptotic formula for

" P2.(cose))

A-9

. , i "J . i i- . ,i j i.. .. . ( .i. , - ..- .- . .. . .. . .- .. .. -. . .- . . .-.. -.. . ' i i ? '2 ' -'' i ' " ii' L"2" ") 2'



1/2
P (cose) sine Jo[(z + 112)e] (A-35)

Then using Euler sum formula

f(9 + 1/2) = k f f(kp) dp + I f'(0) +
0 o24

Moliere obtains a cross section of

k~e =
2 ( 0 )ff dp d0(kep)(ei-) i 1) 2 (A-36)

However, Moliere observed that for small a and at large angles compared to

the screening angle, the cross section should be proportional to e-4 as in

. the small angle Rutherford scattering formula. Rewriting the Moliere

cross section as

e) 4a2(ke) 4  0 S( p)- 1)12 (A-37)
4az kz el sin e iL d Jo(kep)(e

. Moliere noted that (e3 sine) -  agrees with the exact Rutherford formula

within 0.5% up to 60 degrees. Therefore, in order to obtain a result that

agrees with Rutherford results up to 900 and beyond Moliere replaced (e3

sine)-' with (2 sin e/2). The Moliere cross section becomes

-r(e) =  q (e) (A-38)
m k2 (2 sin e12) 4  m

- where the screening factor q is given by

A-10
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( (ke) kp)[ei(P )  2 (A-39)= If PdP J.(k )-il(A 9

4a 0

Equations 34, 38 and 39 represents Moliere's improved solution

to the Schroedinger wave equation over the first Born approximation.

Moliere made a further improvement in the nuclear potential barrier by

fitting the Thomas-Fermi function for heavy atoms with a sum of three

exponentials. Moliere's fit is given by

Wr ') 0.10e - 6r + 0.55e 1.2r' + 035e-0.3r' (A-40)

m

where r' r/r0

According to Moliere, this expression fits the exact Thomas-Fermi function

within 0.2°1 for 0<r'<6. The complete Moliere function is given by

zZe
2

V(r) = t w (r') (A-41)
r m

Substituting the potential function into Equation 34 and the phase shift

function into Equation 39 Moliere finds a solution for q(e) in three dif-

ferent regions of a and 0. Using the following definition for the Moliere

screening angle Xm

x

In - lim df de__q() In X1 (A-42)

Moliere then solves for the screening angle ym in each of these regions

22
and assuming a linear relationship between X2 and a2 , Moliere writes am
general expression for the screening angle over all regions of a and e as

A-li
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,"

2 X0 (1.13 + 3.76a2) (A-43)

This enabled Moliere to propose a simple function for the screening factor

q(e), namely

I = 04

qm() (82 + ×2) 2  (A-44)

13However, Fleischmann has suggested a better fit, especially for large

as

q(6) =  (A-45)
+ +F

where XF = Xme2

Using Equation 38, we can now write the Moliere single scattering proba-

bility function W(o,t) as

W(e,t) = N(t) a (e) (A-46)

where N(t) = the number of independent scattering atoms per unit volume

and am(e) is the Moliere differential cross section. Assuming azimuthal

symmetry and small angle scattering, the probability of one scattering

event occurring in a thickness dt at t through an angle between 0 and O+de

is given by

2w odo W(o,t) dt = 27 ode N(t) a(e,t) dt

A-12
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In the next section, we will use this single scattering function to deter-

mine the multiple scattering distribution function.

Multiple Scattering Theory

In this section, we will follow Scott's 1963 paper'0 in discus-

sing the basic ingredients into multiple scattering theory, the Moliere

derivation, and the results presented by Snyder and Scott in that paper.

Starting with the single scattering function, we will apply it to two or

more successive scattering events in order to establish a probability or

distribution function for the resulting scattered particles. In plane

geometry we can write the probabilities of two single scatterings events

between angles and d as F ( ,,t) do,, and F (02,t) d,2 , where each
'p 2p

scattering function has been normalized.

as F Fip(0i,t) d i = I

We know by ordinary rules of probability the resulting overall deflection

0 due to these two successive scattering events would be given by

Fp(4 ,t) d = d O d Ld Flp( ,t) F2p(4- ,,t) (A-47)

where 0= + 02. This equation is more readily evaluated in "fre-

quency" space by taking the Fourier transform of both sides. This yields

( -,t) 0 f do, F ( ,,t) F - ,,t) (A-48)

(Ct) = d 2 f d, e 0 Fp( i,t) F2 p(42,t) (A-49)

A-13
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F p(Et) =Fi (E,t) F 2(E,t) (A-50)

In polar coordinates the spatial angle distribution can be determined by
converting the two dimensional Cartesian coordinate form of the Fourier
transform into polar coordinates. In terms of the two projected angles

x and ythe Fourier transform is

(y ( y, t) fOd f-d e 1E xo~EyY 2 t (A-51)
Xyy xy

where in polar coordinates (E+

LE

x"y

yy

=L tan- o~ 0cs

and = tane sino sn
y

Substituting in the polar variables 0, a into Equation 51 we get

F (&,ct,t) = f de f d6 e1  cos()-p)F(e(tt) (A-52)
0 0

If the normalized scattering distribution function is independent of

azimuthal variations, the two dimensional transform reduces to a single

Hankel transform

F( xty,t) 2" )ud J d(ye) F(e,t) (A-53)
0

A- 14
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where Jo(Ce) is the zero order Bessel function of the first kind and is

given by

J 0 (Ee) = f d5 e' e Cos(B-00
2T 0

where the value of a is arbitrary. The inverse of this Hankel transfor-

mation is given by

F(e,t) = I. jdE J(Ce) F(&,t) (A-54)
0 "

As in the plane geometry case, we can write the probability of an overall

deflection in polar coordinates for each interval of dei at Oi and

scattering positions ti to ti+dti as the product of each individual

scattering event.

W(e 1 )eldeld61 dt lW(e 2)e2de2dB2dt2 ... (A-55)

Allowing for the probability of no scattering occurring within the inter-
n

val At = t - E dt and a homogenous substance with all W's equal, one
i=1

might expect to take the inverse of the nth power of the Hankel trans-

formation of the single scattering function W(e) to achieve the correct

result. However, if we wish to take into account all permutations of

scatterings in the ti intervals instead of successive scattering, we

must multiply the transform function by tn /n!. In equation form the

Hankel transformation of the scattering function is

w( ) = 27 'ede Jo(ue) W(e) (A-56)
0

where e is the single-scattering angle. The probability of no scatterings

A-15
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occurring in an interval At is equaled to e-'"oAt where o is the recipro-

cal of the mean free pathlength. Combining the above terms, we get for

the transform of the distribution function

-('ot
F n(Et) = e ['( )t]n/nI (A-57)

where in the limit of the integrals At becomes t. The complete distribu-

tion in e is determined from the sum of all scattering as

F( ,t) : F (E,t) = ew(O)t-wot (A-58)
n=o n

Since in the Monte Carlo code we will select a scattering thick-

ness over whici the energy of the particle remains approximately constant,

let us write the distribution function in terms of

F(e,t) : e[(A-59)

t 06 t
* where Q( ,t) = f (E,t') dt' 2T f Ode f dt' J0 (Ee) W(e,t-')

0 0 0

t to

; and Q0(t) = f w0(O,t') dt' 21r f Ode f dt' W(e,t')
0 0 0

The inverse of this function yields the spatial distribution function

* which is only dependent upon the single scattering function W(e,t). Inci-
dently, we could have also achieved this same result from the Boltzman

transport equation.
10
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Using the result from multiple scattering theory (Equation 59)

and Moliere's cross section (Equation 38) let us solve for the spatial

distribution function. From Equations 38 and 46, we can write the single

scattering function in terms of Moliere's cross section as

W(e,t) = 4 N(t) a A-0
k(et qm(e) (A-60)

As in the multiple scattering formula, we wish to consider some nominal

thickness or scattering length t over which the energy of the particle

does not vary much. In a non-homogenous material or at the interface of

two dissimilar materials, we could compute the average value of the single

scattering function W(e,t') as

t t .N (t') 2( )q(e,t ' )  >
1i_1-1f 1

1(e) = _I f W(e,t') dt = 4 It' (A-61)
t 0 te4 0 k2 (t')

However, in the Monte Carlo computer codes MCIMP and MCABLE the step sizes

are adjusted at interface, such that, the equivalent step size in air is

always the same and the scattering takes place in the resulting material

as if it had traveled in that material. Although this is not the same as

averaging the single scattering function, any errors introduced by this

technique should be small due to the statistics of traveling in both

directions, the number of scatterings per unit pathlength, and the averag-

ing of the distribution functions due to differences in the electron

densities of the materials over small ranges should be insignificant.

Therefore, for a homogenous scatterer with no energy loss we define a

characteristic angle according to Scott 10 as

A- 17
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2C = 4"n" 
N t=

k2

2 = 4, e ~z2Z2 Nt/p 2v2 radians 2 for heavy particles (A-62)

and

2 = 47r e4z 2 Z(Z+1) Nt/p 2v2 radians 2 for electrons (A-63)

where N = Nop/A

No = Avogadro's number

p = density of the scatterer in g/cm 3

A = atomic weight of scatterer

pv = the energy of particle in Mev

and t = the step size between scattering events in centimeters.

Substituting X2 into Equation 61, we can now write the exponents in Equa-

tion 59 as

00

P(C) - Q0 2X2 f - q(e) [Jo(Ee)-l] (A-64)0 03

Following the arguments of Scott I° and Bethe 14 we can approximate the

above integral equation as

2 2n (A-65)

() \n 4e

where n y = the Euler constant 0.5772. Although the inverse Hankel

transform of Equation 59 acording to Equation 54 would yield the desired

spatial distribution, this is obviously not a simple task. Moliere

elected to break up the inverse transform by introducing a new parameter B

and a new variable n as follows:

A-18
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y2x I2 B ) 1 22 "- 2
QM{ _O 2o E i 2 in 2 2[n _ + in -

4e 4 eB2  41
22

and Q(c) - =0 (P4- ex2B + in (A-66)
4B eB

where n = EXcB 1/2  (A-67)

This enabled Moliere to write the first term in the spatial distribution

function as a Gaussian term by setting the coefficient of the first term

in the equation to minus one. That is,

2 2
YXm

in =-1 (A-68)
B ex2cB

Solving for B, we get the transcendental equation

2X c
B =in B - .1544 + in- (A-69)

2
Xm

which according to Scott 15 (1952) can be approximated by

2
Xc

B 1.153 + 2.583 log (A-70)
Xm

to within 0.5% for values of 2/ between 100 and 15.2c 2

The value ×/X2 is approximately equaled to Qo as can be seen

from Equation 59 if we assume q=1 for 6>xm and zero f'r o<m. In

equation form

A-19
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q(@)de do 2Qo0 2× ) o2 - = 2 2 _ (-1
0 em Xm

Although this value of Qo is not necessary here, it will be used later in

the Snyder-Scott distribution. The spatial distribution can now be writ-

ten as the inverse Hankel transform of

2 1 2
2 (i + 1 n

F( ,t) = es(n) - O =e B (A-72)

which can be expanded into the form of

422 2 "2221
1,t) e 1 ++ _2n- + ...J (A-73)4Q 4 2

Introducing a reduced angular variable 0

as 0 =  (A-74)1cB / 2  .

X B

we can write the normalized spatial distribution in terms of the normal-

ized reduced spatial distribution as

21 FR(O,t) OdO = 27 F(o,t) Ode

Taking the inverse Hankel transform of Equation 73 we get

1/2 n2

B 4 22j ('Et) f ndnf J0 UOn) e 1+ I.. in
7TR' eQ4 4

1 2  n2  2 ].

+ + 1(A-75)
2 4B 4
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or

FR(O't) =1 2e'I+F (1 0) +L.F (0) + .. ~ (A-76)

where

) N! 4

Equation 76 represents the Moliere result for the normalize spatial dis-
tribution function for particles due to multiple scatterings.

Snyder and Scott in a direct numerical integration of the
inverse transform of the projected angle distribution derived analytical
fits which are easily evaluated. Rather than attempt to evalute Equation
76 in the Monte Carlo codes, we elected to evaluate the projected distri-
bution given hy Snyder and Scott10 as

-ae2 ea202
W(eR9rO) - Ale + 2 for W > .007 W(O,.) (A77)

and

W(eOt = SI__ 2- + 11.68)) log (10() (A-78)
R' 26e3  2

. .-

R R

for WoOn e- .007 2 .,
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where

A, =I~ (-951 + 865 log )!11/2

A 2 = [QO (6.3 + 10.0 log 10 Jj-1'

al= [slo (10.96) + 4.381 log o 1

a2 = [,o (0.216 + 2.326 log ~)-

and introduce a separate angle for the azimuthal dependence. The reduced

angle 6R is given by

9R 6 p /M

where eis the projected angle and SI is defined in Equation 71 as X2/ 2

p cY

A-22.
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